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Abstract

3D body modeling has been a long studied topic in com-
puter vision and computer graphics. While several solu-
tions have been proposed using either multiple sensors or a
moving sensor, we propose here an approach when the user
turns, in a natural motion, in front of a fixed 3D low cost
camera. This opens the door to a wide range of applications
where scanning is performed at home. Our scanning system
can be easily set up and the instructions are straightforward
to follow. We propose an articulated, part-based cylindrical
representation for the body model, and show that accurate
3D shape can be automatically estimated from 4 key views
detected from a depth video sequence. The registration be-
tween 4 key views is performed in a top-bottom-top manner
which fully considers the kinematic constraints. We validate
our approach on a large number of users, and compare ac-
curacy to that of a reference laser scan. We show that even
using a simplified model (5 cylinders) an average error of
5mm can be consistently achieved.

1. Introduction
3D body modeling is of interest to computer vision and

computer graphics. A 3D precise body model is necessary
in many applications, such as animation, virtual reality, hu-
man computer interaction. However, obtaining such an ac-
curate model is not an easy task. Early systems are either
based on laser scan or structured light. While these systems
can provide very accurate models, they are expensive.

Image-based approaches play an important role in body
modeling. Shape-from-silhouettes (SFS) method [13, 14]
can give us very good result given many synchronized cam-
eras. The advantage is that only the silhouette information
is used hence we do not need to pay extra attention to take
good care of textures. The disadvantage, on the other hand,
is also obvious: Accuracy heavily relies on the number of
synchronized cameras which restrict its application in real
life.

The advent of a new type of range sensors, e.g. Mi-
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Figure 1: (a) System setup (b) Articulated part-based cylin-
drical representation of human body (c) Tree representation
of human body

crosoft Kinect [12], has drawn significant attention in com-
puter graphics and computer vision. Several methods and
two commercial systems (i.e. Styku [22] and Bodymetrics
[2]) based on the depth camera have been proposed for body
modeling. These methods can be generalized and catego-
rized in the following scenarios: 1) multiple fixed sensors
with static person; 2) multiple fixed sensors with moving
person; 3) single moving sensor with static person; 4) sin-
gle fixed sensor with moving person. Our main focus in the
paper is to establish a convenient home-used body model-
ing system so that a naive user can easily scan his/her body
alone. This requirement leaves the 4th option as the only
viable one. So we try to address 4) in this paper, i.e. single
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Figure 2: General pipeline of our scanning system

fixed sensor with moving person.

The complete setup of our home-used scanned system is
illustrated in Figure 1(a). The camera is mounted vertically
to maximize the field of view so that a subject can stand as
close as possible. The required initial pose of the subject
is also shown in Figure 1(a). While the subject starts turn-
ing from the initial pose, he/she is required to stay static at
approximately every 1/4 circle for 1 second. The subject
can turn naturally as long as his/her two arms stay in the
torso’s plane and his/her two arms do not cause occlusion
on legs. While the system and instructions are easy to set
up and follow resprectively, the whole data-recording pro-
cess won’t take more than 10 seconds.

This user-friendly scenario imposes serious algorithmic
challenges. Articulation: Articulation needs to be con-
sidered even when the person is turning on an automatic
turntable [4, 26]. Not to mention when the person is turn-
ing in a nature way in front of the Kinect sensor. The more
cylinders we use in the model, the more degree of freedom
(DOF) we need to estimate. Noisy nature of Kinect: While
Kinect can obtain reasonable results at close distances, its
behavior decreases quadratically as we go further away

which is verified in [11]. Our normal working distance is
2m, and this gives us an statistical error ε ∼ N(0, σ) where
σ is approximately 7mm. Lack of texture and accurate
silhouette information: With only range images, we lose
access to the texture information. Big variance on boundary
of object in range images makes silhouette noisy. So in our
paper we cannot use the two most powerful hints to register
and refine the model.

In this paper, we propose a body modeling system with a
single fixed range camera which can be used conveniently at
home. The general pipeline of the working system is shown
in Figure 2. We first detect 4 key poses out of the whole
depth video sequence, which are front (reference pose),
back, and two profiles. The 4 key frames are registered in a
top-bottom-top manner. Top-bottom means that registration
goes from the root node to all leaf nodes in the tree model
of human body as shown in Figure 1(c) while bottom-top
means the opposite. Top-bottom registration first aligns the
torso or the whole body then aligns succeeding rigid body
parts. Bottom-top registration first refines the alignment of
rigid body parts and then propagate refinement all the way
to the root node, i.e. torso. After registering 4 key frames,



an articulated part-based cylindrical body model (as shown
in Figure 1(b)), which supports a set of operations, can be
used to process the rough and noisy registered points cloud
of the body. Figure 2 shows a flow chart of the modeling
process. The key here is the 2D part-based cylindrical rep-
resentation which enables computationally effective 2D in-
terpolation and 2D filterings.

The contributions of this paper can be summarized as
follows: 1) A body scanning system which can be conve-
niently used at home by a single naive user; 2) A new artic-
ulated part-based representation of 3D body model which
supports a set of operations, such as composition, decom-
position, filtering, and interpolation; 3) A simple method to
automatically detect 4 key poses from a sequence of range
images; 4) A top-bottom-top registration between 4 key
frames; 5) A quantitative evaluation of depth quality.

The rest of the paper is organized as follows. Section 2
covers related state-of-the-art algorithms. Section 3 details
our proposed body model, i.e. the articulated, part-based
cylindrical representation and a set of operations that it sup-
ports. In section 4, we give our top-bottom-top registration
process. Section 5 includes our experimental results and a
quantitative comparison analysis with a laser scanned result.
We conclude briefly with Section 6.

2. Related Work
At a first look, this is a non-rigid registration problem on

which a huge amount of work has been proposed. [6] ex-
tends the iterative closest point algorithm (ICP) [30] by soft-
ening hard links between points and formulating the regis-
tration process under a probabilistic scheme. Embedded de-
formation model [23] proved to be successful in non-rigid
registration [8, 15, 26]. A similar approach [16] retains
smoothness of warped surface by using Laplace-Beltrami
operator. All those methods require either enough overlap-
ping areas between consecutive frames or accurate range
scans as inputs. In our case, however, we are registering
four noisy frames with barely overlapping area which re-
stricts the application of the well-developed non-rigid reg-
istration methods in our scenario.

Several related works exist on body modeling. They can
be roughly classified as four main categories based on the
number of cameras used and whether the camera or the per-
son is moving. Different scenarios make different underly-
ing assumptions and hence lead to different research focus.

Multiple Fixed Cameras with Static Person. Before
the introduction of the nowadays popular range sensors (e.g.
Kinect), people were able to obtain full model from several
fixed intensity cameras by Shape-From-Silhouette (SFS)
algorithm [14, 19]. The modern SFS-based approaches
use surface-based representation which allows to use reg-
ularization in an energy minimization framework and give
pretty impressive results [13]. Currently, after more and

more range cameras hit the market, researchers have been
working on 3D modeling with this type of sensor since it
can directly give you the shape of the object. Commer-
cial systems are using multiple calibrated depth cameras to
model body shape. The person is required to stay static dur-
ing procession and it is quite straightforward to align several
points clouds from different cameras to get the final model.
Both methods can provide the most accurate model so far.
However, they both require multiple synchronized cameras
and the later even needs to deal with interference between
cameras [18]. These factors make them far from home ap-
plications.

Multiple Fixed Cameras with Moving Person. Mo-
tion of a person can greatly decrease the number of required
fixed cameras. Because provided a good registration result
between consecutive frames, it is exactly the same as setting
up more cameras. For the SFS-based approaches, the reg-
istration is achieved by locating the Colored Surface Points
(CSP) [3, 4]. The corresponding CSP between two consec-
utive frames incorporates the 6 DOF rigid motion informa-
tion. For the Depth-based approaches, a good registration
can be provided either by articulated version of the Iter-
ative Closest Point (ICP) algorithm [30] or by iteratively
performing pair-wise non-rigid geometric registration and
global registration [26]. Again, these methods still require
3 or 4 synchronized cameras and the person must be stand-
ing on a turntable and try to remain rigid.

Single Moving Camera with Static Person. SFS-
based approach only works when the camera is mounted
on a robot arm and moves circularly around the static body.
While under circular motion, the DOF of fundamental ma-
trix between consecutive frames is restricted to be 4 [28].
Parameters of all fundamental matrix then can be esti-
mated by minimizing the reprojection errors of correspond-
ing epipolar tangents [29]. And the model of the body can
be reconstructed from the motion estimated from funda-
mental matrixes. Although the result is quite impressive,
the system set up is still impractical. As for Depth-based
approach, KinectFusion [9] proves to be a great success.
Based on dense tracking and volumetric representation, it
can reconstruct a static 3D scene in real time. While it
works on a static scene, it fails when registering only the
points from a moving person in the presence of articulation.

Single Fixed Camera with Moving Person. The only
proposed approach [27] so far is depth-based, and uses sta-
tistical learning. [27] estimated the body shape by fitting
image silhouettes and depth data to the Shape Completion
and Animation of People (SCAPE) model [1]. The work
can be understood under a learning scheme where the best
model is predicted by the observed data. The final model is
a best match among all candidates of a limited subspace in-
stead of being generated from the data itself. The bias intro-
duced by the learning scheme is inevitable. Moreover, the



whole system takes approximately 65 minutes to optimize,
which is too slow for practical applications. Our focus is
also on single fixed camera with moving person, we align
the detected 4 key frames completely based on the prior ge-
ometry information.

3. Generic Human Body Model and Opera-
tions

The generic body model used in this paper and its sup-
ported operations are important for both top-bottom-top
registration and modeling.

3.1. Generic Human Body Model

The generic human body model is depicted in Fig-
ure 1(b). The body model consists of a set of cylinders
representing rigid body parts and respects kinematic con-
straints,i.e. each rigid part is connected with its parent via
a joint. This model also has a tree representation (Figure
1(c)) which is important for understanding our top-bottom-
top registration. In the tree representation, each node is a
rigid body part and each edge is a joint. Assuming that we
have n nodes and n edges, each node Bi and each edge Ji
can be represented as

Bi = {Pi, I
Ji

i }, i = 1...n, (1)

Ji = {~jic, (ĵix, ĵiy, ĵimain)}, i = 1...n. (2)

where Ji and Bi forms a pair and Ji connects Bi to its
parent node. Each joint Ji has four vectors which constitute
the local Cartesian Coordinate System. ~jic is the location
of joint i and the origin of local system. ĵimain is the main
direction of cylinder i and the z axis of local system. ĵix and
ĵiy are the x axis and y axis of the local system. A specific
body part Bi has two components. P is the points cloud,
which can be represented in the World Cartesian Coordinate
System as PW

i , in the Local Cartesian Coordinate System
defined by Ji as PLi

i or in the Local Cylindrical Coordinate
System defined by Ji as PCi

i . IJii is the cylindrical image
and it can also be regarded as a compact and discretized
version of PCi

i .

3.2. Supported Operations

Decomposition (3D). Given a points cloud PW
body of

a whole human body, we decompose it and obtain PW
i

of each Bi in (1) by taking advantage of planar geometry.
Assuming that accurate critical points information is given
(section 4.2) we can easily decompose the whole body into
several rigid parts. A 2D example decomposing crotch is
given in figure 3. The whole body can be decomposed in a
similar way. Notice that after decomposing, connected rigid
body pair has an overlapping area, i.e. PW

i

⋂
PW

j 6= φ if
Bi and Bj are connected by joint Ji. The overlapping area

is useful for blending between connected body parts when
we compose everything into a whole model.

Figure 3: Decomposition at crotch

Local Structure Extraction (3D). After decomposi-
tion, every point in PW

body is assigned to a rigid body part
Bi. We use Pincipal Component Analysis (PCA) [10] to ex-
tract the structure (ĵix, ĵiy, ĵimain) of each rigid part. The
largest component defines the axis of the corresponding
cylinder and hence is ĵimain. The order of ĵix and ĵix does
not matter as long as (ĵix, ĵiy, ĵimain) forms an Cartesian
Coordinate System in space. Notice that during the decom-
position process, the axis information is used. So in practice
we apply decomposition and local structure extraction iter-
atively until all the axes converge.

Global and Local Cartesian Coordinate System
Transformation PW

i → PLi

i (3D→ 3D). For each rigid
body part Bi, we need to represent its points cloud PW

i in
the Local Cartesian Coordinate System obtained from de-
composition and local structure extraction. Given the basis
(ĵx, ĵy, ĵmain) which are the new basis and the center

−→
jc .

Then for any point −→pijw ∈ PW
i we have the transformation

−→pij li = Ri
−→pijw +

−→
ti where Ri = [ĵix, ĵiy, ĵimain]−1 and

−→
ti = −Ri

−→
jic.

Local Cylindrical Image PLi

i → PCi

i (3D→ 2D).
After mapping each point to its corresponding Local Carte-
sian Coordinate System −→pij

li = [pliijx, p
li
ijy, p

li
ijz], it can be

further transformed into the Cylindrical Coordinate Sys-

tem −→pijci = [ρciij , ϕ
ci
ij , z

ci
ij ] where ρciij =

√
pliijx

2
+ pliijy

2
,

ϕciij = arccos(
p
li
ijx

ρ
ci
ij

) and zciij = pliijz . −→pij
ci can be further

discretized and mapped to IJi

i [7].
Interpolation (2D). Interpolation is a main reason for

our cylindrical representation. In many cases even after we
gather many frames and use all the points, we still have
holes on the cylindrical image due to occlusions. We pro-
pose linear interpolation along rows of the cylindrical image
which turns out to be circular interpolation in space.

Filtering (2D). Filtering is another reason for us to use
the cylindrical representation. After mapping 3D points to
a 2D cylindrical image, we can easily take advantage of the
well-developed 2D image filters. We use the bilateral fil-
ter [25] for spatial smoothing which can reduce noise while



preserving edges. For temporal filtering, we use the running
mean on each pixel on the cylindrical image [7].

Composition (2D→ 3D). We compose single cylin-
ders to construct the 3D mesh body model. The gap be-
tween connected rigid body parts must be blended. The
2D cylindrical images of connected body parts overlaps
(this is not reflected in Figure 2). Assuming Bi is the
parent of Bj , we can decompose the overlapping points
cloud PW

ij out of PW
i using the same planar geometry de-

fined before. PW
ij is mapped in the following directions:

PW
ij → P

Lj

ij → P
Cj

ij → I
Jj

ij . We linearly blend I
Jj

j with I
Jj

ij

to update IJj

j . Connectivity on 2D cylindrical image help us
mesh rigid body part easily.

Algorithm 1 Articulated registration based on EM-ICP
Input: A reference decomposed points cloud Qref =
{Pref

i , i = 1...n}, a points cloud Qin.
Output: A decomposed and registered points cloud
Qout = {Pout

i , i = 1...n}.
Register Qin with Qref as a whole by EM-ICP
Qout = {Pout

i , i = 1...n} ← Decompose Qin same as
Qref

initiate ε,tε and countmax

count← 0
while ε ≥ tε do
count← count+ 1
ε← 0
for i = 1→ n do

register Pout
i with Pref

i in the local Cartesian Coor-
dinate System defined by Ji using EM-ICP.
project the transformation matrix to a 2 DOF sub-
space where the rotation angles are θi and δi
ε← ε+ |θi|+ |δi|

end for
Register Qout with Qref as a whole by EM-ICP
if count ≥ countmax then

display(’Maximum iteration reached!’)
return Qout = {Pout

i , i = 1...n}
end if

end while
return Qout = {Pout

i , i = 1...n}

4. A Top-Bottom-Top Registration Method

Iterative alignment failure. A straightforward and in-
tuitive registration approach is to incrementally align new
frame with the existing model and add this frame to re-
fine the model if the alignment result is proved to be good
enough. Iterative Closest Points (ICP) algorithm [30] has
been well developed over these years. Its state-of-the-art
variant EM-ICP [21, 5] implemented on GPU [24] exhibits

both robustness and speed.
In our case, articulated registration (Algorithm 1) based

on EM-ICP is employed due to the existense of articulation
between any new frame and our model. The model is ini-
tialized with the front pose and all succeeding frames are
registered with the model. Surface Interpenetration Mea-
sure (SIM) [20] is used to check the consistency between
any new frame and the model. A hard threshold is used to
remove outliers, i.e. bad frames.

After several experiments, however, we find this ap-
proach fails for two main reasons: 1) Noisy nature of input
data as described before. The larger the noise the harder
it is for EM-ICP to register two points clouds. 2) EM-ICP
algorithm tends to underestimate rotations while registering
cylindrical shape objects [17], i.e. EM-ICP tends to shrink
the model when you go along the cylindrical surface.

The failure of the straightforward approach enables us
to think from a different perspective. In this paper, instead
of registering all frames, we use 4 key poses: front (refer-
ence frame), back , left profile and right profile. We auto-
matically detect and extract the 4 key frames out of a com-
plete depth video sequence where a subject turns around
360o. While the 4 frames cannot be registered by Algo-
rithm 1 due to limited overlapping area, we register them in
a top-bottom-top manner. Top-bottom means to enforce the
kinematic constraints from a parent node to its child nodes
while bottom-top means the opposite. For our simplified
body model which consists of 5 cylinders (torso-head, left
leg, right leg, left arm and right arm), top-bottom method
means aligning the whole body first and then the registration
of each rigid limb in the Local Cartesian Coordinate System
can be restricted to a 2 DOF. The bottom-top method first
aligns all rigid limbs, then the registration of torso-head is
solved by considering the constraints of rigidity and con-
nectivity. The top-bottom process can put every rigid body
part in a roughly correct position while the bottom-top pro-
cess refines and completes the registration.

4.1. Detect 4 Key Postures

The front pose Ffront is labeled as soon as we detect the
critical points (defined in Section 4.2). The front pose is set
as the reference frame and it is used to initialize our model
in the top-bottom-top registration process. Starting from the
front frame we assign weighted normalized score to each
succeeding frame and detect other key poses by searching
over the whole sequence.

Scores associated with each frame. There are three
main scores. Score smi indicates the motion between two
consecutive frames. Assume that the user is the only mov-
ing object in the scene, we calculate smi as the sum of abso-
lute pixel-wise difference between two consecutive range
images. Score swi is the width of bounding box in pix-
els as shown in Figure 4(a). Score ssi illustrates the sim-



ilarity in structure between current frame i and the front
frame Ffront. The second largest nomalized eigenvector

ˆvarm
i of frame i gives us the direction of arms. Hence

ssi = ˆvarm
i · ˆvarm

front indicates too what extent the current
pose looks like the front pose.

Normalized scores associated with each frame. We
normalize all three scores of each frame i as follows: s̄im =
smi /maxi=1...n s

m
i , s̄iw = swi /maxi=1...n s

w
i and s̄is =

ssi/maxi=1...n s
s
i .

Detect the back and profiles. Based on these nomalized
scores we can detect the back and two profiles.

sbacki = αsmi + (1− α)ssi , (3)

sprofilei = βsmi + (1− β)swi (4)

sbacki and sprofilei are two scores of frame i used to detect
back and profiles respectively. α and β are weights for the
corresponding base scores. They are all set to 0.5 in our
experiment. Then the two profiles and back are detected in
the following way,

FleftProfile = argmin
i=1...n/2

sprofilei , (5)

FrightProfile = argmin
i=n/2...n

sprofilei , (6)

Fback = argmin
i=FleftProfile...FrightProfile

sbacki . (7)

4.2. Detect Critical Points

The critical points are the points which are used for de-
composing the whole body (see Figure 4(b)). Our simplified
model consists of 5 cylinders, hence we need a minimum of
3 points to seperate the whole body as shown in Figure 4(b).
We detect these 3 critical points from the front frame by the
following procedure: 1) Detect the horizontal gaps on the
front range image, e.g. gap between the hand and the body
or gap between two legs as shown in Figure 4(b). 2) Search
upwards to find the highest white pixels which are the 2D
critical points. 3) Project 2D critical points to 3D critical
points.

4.3. Top-bottom Registration

The top-bottom registration enforce the kinematic con-
straints from a parent to its childs. We register the back
with our model using 2D silhouette information and regis-
ter profiles with our model using full 3D information.

Silhouette-based top-bottom registration of back
pose. First the whole back pose (i.e. back frame) is flipped
ϕ = arccos(

v̂back
arm ·v̂

front
arm

‖v̂back
arm ‖‖v̂

front
arm ‖

) = arccos(v̂backarm · v̂frontarm ) de-
grees in space along the main axis of torso and pasted to a
certain depth µ. µ is predefined (e.g. 150mm) or roughly
obtained from the two profiles. Then we register the back

(a) (b)

Figure 4: (a) Width of the bounding box (b) Critical points
detection

frame with the front frame (i.e. reference frame) based on
their silhouettes (i.e. 2D points cloud) obtained from ortho-
graphic projections using Algorithm 1. The result is shown
in Figure 5.

(a) (b)

Figure 5: (a) Before registration (b) After registration

Depth-based top-bottom registration of profile pos-
ture. The same silhouette-based method cannot be applied
to register the two profile frames since the silhouette of arm
cannot be found in the profile frame. We instead directly
take advantage of the 3D information. After registering
the back frame, we build an approximate model and fill the
holes on the two sides by interpolating the cylindrical depth
images. Algorithm 1 is then again used to register the two
profile frames with the reference model.

4.4. Bottom-top Registration

The bottom-top registration first refines the alignment
of leaf nodes and then propagate the refinement inversely
along the edges until it reaches the root node. The kine-
matic constraint is hence enforced from the child to parent.

Refining leaf node registration. Each leaf node (be-
sides head) represents a rigid body part, and contains in-
formation coming from 3 frames since one profile frame
is occluded. The 3 points clouds are only approximately
aligned after the top-bottom process and is registered more



precisely after an iterative local registration. Step a) We ob-
tain profile’s silhouette by orthographically projecting the
profile points cloud along the profile direction. The cor-
rect depth and angle of back frame with respect to the front
frame is then recovered from profile’s silhouette. Step b)
Given the front and back, we generate a cylinder initiated
by front and back points clouds and fill holes by interpola-
tion. Then we register the profile points cloud to the cylin-
der by EM-ICP. By iteratively executing step a) and step b),
we obtain a more compact cylinder at convergence which
experimentally occurs after 10 iterations. We believe that
the iterative process works for two main reasons: 1) Profile
points cloud contains the width information of a rigid body
part. 2) Front and back points clouds have overlapping spa-
tial feature points with the profile points cloud.

Refinement propagation. After correctly registering
the child, we propagate the registration improvement to
its parent. In our experiment, the parent torso-head has 4
childs, i.e. 4 limbs. We register the decomposed torso-head
from back pose by enforcing rigidity and connectivity, i.e.
torso-head is rigid and it is connected with four limbs. This
is typically a problem of finding transformation matrix out
of corresponding points which has closed-form solution.

5. Experimental Results

Figure 6 includes modeled results of 4 people scanned
by our system. Each model is showed at 4 different views.
Figure 6 shows clear and smoothed body shapes as a whole
which contain personalized shapes such as knees, hips and
clothes. The holes on body are interpolated and the joints
between rigid body parts are well blended. The average
computing time of the whole process with an Intel Core i7
processor at 2.0 GHz is around 3 minutes. Although finer
details of body shape (e.g. lips, eyes) cannot be extracted
due to the noisy nature of Kinect, we believe that the cur-
rent system can generate models accurate enough for appli-
cations such as online shopping and gaming. We believe
that the model can be further refined by using a more com-
plex model, adding more frames and taking advantage of
the corresponding RGB image.

Besides qualitative analysis, we also present quantitative
comparison between our model and the laser scanned re-
sult. Due to the existence of articulation between these two
models, it is hard to compare them as a whole. We fol-
low the decomposition idea (section 4.2) and compare the
segmented rigid parts seperately. The heatmap of torso and
rightleg are shown in Figure 7. We generate the point-wise
error by mapping each point of our body part to the cylin-
drical image generated by the laser-scanned body part and
looking for the closest pixel or interpolating neighboring 4
pixels. The median of absolute error on torso is 5.84mm
while the median of absolute error on right leg is 2.59mm.

Figure 6: Different people modeled by our scanning system

(a)

(b)

Figure 7: (a) Heatmap of torso at 4 different views (b)
Heatmap of right leg at 4 different views

6. Conclusions and Future Work
We have presented a practical system for 3D body scan-

ning that can be operated by a single naive user at home.
While the accuracy result are very encouraging, we will
investigate several ways to recover fine details of body



shape. These include the use of a larger number of cylin-
ders, the exploitation of information contained in the RGB
data stream and the application of super-resolution meth-
ods.
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