
Surface Oriented Traverse for Robust Instance Detection in RGB-D

Ruizhe Wang Gérard G. Medioni Wenyi Zhao

Abstract— We address the problem of robust instance detec-
tion in RGB-D image in the presence of noisy data, cluttering,
partial occlusion and large pose variation. We extract contour
points from the depth image, construct a Surface Oriented
Traverse (SOT) feature for each contour point and further
classify it as either belonging or not belonging to the instance
of interest. Starting from each contour point, its SOT feature is
constructed by traversing and uniformly sampling along an ori-
ented geodesic path on the object surface. After classification, all
contour points vote for an instance-specific saliency map, from
which the instance of interest is finally localized. Compared
with the holistic template-based and learning-based methods,
our method inherits advantages of the feature-based methods
in dealing with cluttering, partial occlusion, and large pose
variation. Furthermore, our method does not require accurate
3D models or high quality laser scan data as input and takes
noisy data from commodity 3D sensors. Experimental results
on the public RGB-D Object Dataset and our FindMe RGB-
D Dataset demonstrate the effectiveness and robustness of our
proposed instance detection algorithm.

I. INTRODUCTION

Accurate and robust instance detection is a fundamental
problem in robotics and perception, and it plays a key role in
many complex high-level robotic operations, e.g., navigation
and object retrieval. With the recent advances in 3D sensing
technologies, substantial improvements have been made over
the traditional 2D approaches by incorporating an additional
depth channel. However, the problems of cluttering, partial
occlusion, large pose variation, and low quality input data
from commodity 3D sensors still remain challenging.

Traditionally holistic template-based methods [10], [11],
[22] and learning-based methods [4], [14], [17], [19], [21],
[25], [30] prevail in the field of instance detection from
RGB-D. Both types of methods detect the instance using
a sliding window approach either with multiple templates
or a learned model. Both paradigms, however, have several
drawbacks in common. First, it is not trivial to deal with
partial occlusion. While the most efficient holistic methods
[10], [11], [17], [22] fail, improved methods with visibility
reasoning [4], [19], [30] inevitably increase the computa-
tional cost. Second, when coping with large pose variation,
especially wild camera in-plane rotations, more templates
or more training images of the object are required, which
inevitably leads to a higher confusion rate with either other
objects or the background. Third, most methods assume
accurate 3D models available either for direct use or for

R. Wang and G. Medioni are with the Department of Computer Sci-
ence, University of Southern California, Los Angeles, California, USA.
{ruizhewa,medioni}@usc.edu

W. Zhao is with DAQRI Inc., Los Angeles, California, USA.
wenyi.zhao@daqri.com

Contour 
Point

SOT0 0

Binary
Classification

(a)

(b) (c)

Fig. 1. (a) A 3D scene generated from a RGB-D image and SOT feature
is constructed for one example contour point (red dot on the white cap), by
traversing and uniformly sampling (blue dots) along an oriented geodesic
path on the object surface (red dash line). After construction, SOT feature
is passed into a binary classifier. (b) All contour points are classified as
either instance (i.e., white cap) contour points (red) or non-instance contour
points (blue). (c) An instance-specific saliency map generated by voting all
classified contour points.

rendering [4], [10], [11], [19], [22], [25], [30], it is not,
however, an easy task to obtain such models for common
objects in daily life. While methods with high-quality laser
scanners are too expensive, solutions with commodity depth
sensors [20] fail to reconstruct small or symmetric objects
due to sensor resolution limitations and geometric alignment
failures respectively.

Feature-based methods for instance detection in intensity
images [18] have been successful when dealing with partial-
occlusion and large pose variation, mainly due to the in-
variant nature of the constructed 2D features. More recently,
inspired by the success of the 2D feature, several 3D features
have been developed [3], [8], [9], [12], [15], [23], [27], [28],
[31] and applied towards 3D instance detection [15], [26],
[27]. These feature-based instance detection methods usually
follow an interest points detection, feature extraction, feature
matching, geometric alignment and false rejection paradigm.



While the discernability of 3D features heavily relies on the
quality of 3D data, most feature-based methods have only
been evaluated on high quality laser scan data or synthetic
data.

We propose a novel Surface Oriented Traverse (SOT)
3D feature to perform the task of robust instance detection
in RGB-D image. Unlike traditional methods, we follow
an interest points detection (i.e., contour points), feature
extraction (i.e., SOT), feature points classification, saliency-
map generation and object localization paradigm. First, we
extract contour points from the depth image, which are sparse
and often reveal the object’s true boundary (Figure 1(b)).
Second, we construct a SOT feature for each contour point
by traversing and uniformly sampling along an oriented
geodesic path on the object surface (Figure 1(a)). Third,
we address the problem of instance detection in RGB-D
as binary classification of all contour points into instance
and non-instance ones (Figure 1(b)). Fourth, all classified
contour points vote to generate an instance-specific saliency
map (Figure 1(c)). Fifth, we finally localize the instance of
interest by analyzing the saliency map. Our method performs
well in the presence of partial occlusion, cluttering, and large
pose variation, and takes noisy data from commodity 3D
sensors, instead of accurate 3D models or high quality laser
scan data, as input.

Our main contributions are: I. A novel Surface Oriented
Traverse (SOT) 3D feature extracted from RGB-D image;
II. A new instance detection framework by classifying and
voting contour points extracted from depth images; III.
Extensive evaluation of proposed method on a public dataset
as well as a self-collected dataset. For the remainder of the
paper, section II presents the relevant literature. Section III
describes our instance detection algorithm in details. Sec-
tion IV presents the experimental evaluation results while
section V ends with a conclusion and future work.

II. RELATED WORK

Object detection in RGB-D Data. For template-based
methods, Hinterstoisser et al. [10] use an efficient represen-
tation of multimodal templates from both the RGB and depth
images and scan a test RGB-D image with all templates in
a sliding window fashion in real time. They further improve
their method by a geometry and texture verification post-
processing step [11]. In a recent work [22], the multimodal
templates are discriminatively trained and a cascade scheme
is proposed to speed up the detection process such that 10-30
objects can be detected simultaneously in real time. Though
extremely fast, the holistic template-based methods usually
fail in the case of partial occlusion.

For learning-based methods, Lai et al. [17] concatenate
the Histogram of Gradients (HOG) features extracted from
the RGB and depth images and train a linear Support Vector
Machine (SVM) to detect the object. Pepik et al. [21]
extend the Deformable Part Models (DPM) to include both
estimate of viewpoint and 3D parts that are consistent across
viewpoints. Kim et al. [14] find the optimal location of 3D
objects by exploring the compatibility between segmentation

hypotheses of the object in the image and the corresponding
3D map. Song and Xiao [25] train an Exemplar-SVM classi-
fier for each rendered depth image of a 3D CAD model and
detect it in the test image by sliding a detection window in
3D space. Meger et al. [19] locate objects in 3D that adapts
visual appearance models using explicit visibility analysis.
Bonde et al. [4] use soft label Random Forest to learn
discriminative shape features of an object and emphasize
features on the visible region to handle occlusion. Tejani
et al. [30] employ a Latent-Class Hough Forests and handle
clutter and occlusion during the inference process. Stiene
et al. [29] detect objects in range images by classifying
entire contours represented by the Eigen-Curvature Scale
Space (Eigen-CSS).

While the problems of cluttering and partial occlusion
have been addressed by the recent works of [10], [11], [22]
and [4], [19], [25], [30] respectively, all of them assume an
accurate 3D model as input, which is not easily accessible
for common objects in daily life.

3D Features. Many 3D features, especially in the robotic
community, have been developed recently. Stein and Medioni
[28] propose SPLASH for efficient structural indexing of
a 3D scene for object recognition. Johnson et al. [12]
introduce the Spin Image for efficient object recognition.
They recognize objects in cluttered scenes by matching ge-
ometrically consistent Spin Images. Frome et al. [8] extend
the 2D Shape Context [3] and develop the 3D Shape Context
(3DSC) feature for object recognition. They introduce a
Representative Descriptor Method at the recognition stage.
Knopp et al. [15] develop the SURF [2] feature to handle
the 3D case and perform object recognition by a Hough
transform procedure. Rusu et al. [23] introduce the Fast
Point Feature Histogram (FPFH) 3D feature to perform the
task of shape registration. The Signatures of Histograms
of OrienTations (SHOT) feature [31] balances the trade-
off between robustness and descriptiveness. The Rotational
Projection Statistics (RoPS) feature [9] is obtained by rota-
tionally projecting the neighboring points of a feature point
onto 2D planes. It is used for object recognition again by
checking geometric consistency among matchings. Steder
et al. [27] construct the Normal Aligned Radial Feature
(NARF) from contour points extracted from the range scan.

III. SURFACE ORIENTED TRAVERSE (SOT) FEATURE

We first describe how to extract contour points in depth
images (Section III-A). Then we propose our method to con-
struct SOT for each contour point (Section III-B), followed
by its parameters and characteristics (Section III-C) and a
detailed comparison with a similar 3D feature (Section III-
D). Finally we discuss how to classify contour points, how
to vote for an instance-specific saliency map, and how to
further localize the instance of interest in it (Section III-E).

A. Extract Contour Points from Depth Images

As shown in Figure 2, the contour points, or edges,
extracted from intensity images by thresholding the gradient
magnitude at each pixel, contain a lot of false boundary



pixels, i.e., pixels inside the object and from the background
(Figure 2(a)). The contour points extracted from the depth
image (Figure 2(b)), on the other hand, are much sparser and
reveal objects’ true boundaries.

Given a depth image D that maps a pixel u = (u, v)T ∈
R2 to its depth value D(u), the contour points are defined
as points each of whose 8-connected neighborhood N 8

u has
at least one pixel v whose depth value D(v) is larger than
D(u) by a threshold DT ,

C = {u ∈ U|∃v ∈ N 8
u , D(v)−D(u) > DT }, (1)

where U represents the set of all possible 2D pixel loca-
tions, and DT represents the largest gap allowed on a smooth
surface. Throughout all our experiments (Section IV), we use
a structured-light based Kinect sensor [1]. While the noise
level increases quadratically with distance, we set the depth
gap threshold DT at depth z to be 15 × q(z) where q(z)
is the quantization step at depth z [24]. For time-of-flight
based 3D sensors with a well-known flying-pixel issue on
object boundaries, an interesting discussion on contour points
extraction can be found in [27].

B. The SOT Feature

To ease the understanding of the SOT feature construction
process, we demonstrate how to extract SOT features on two
objects, i.e. a cube (Figure 3(a)) and a ball (Figure 3(b)). For
each extracted contour point u, we construct its SOT feature
by traversing and uniformly sampling along an oriented
geodesic path on the object surface. There are two key
components in the construction process, i.e., the orientation
of sampling and how to sample in a view-invariant way.
To be more specific, for a contour point u, its SOT feature
FSOT (u) is constructed as follows (Figure 3):

I. We decide the orientation of sampling ~gu ∈ R2 at
contour point u by applying a Sobel filter on depth image
D, i.e., by calculating gradient of the depth image at u. It is
worth mention that since the object of interest always lies in

(a)

(b)

Fig. 2. (a) Color image and contour points extracted by thresholding the
maximum gradient magnitude of the R,G,B channels at each pixel (b) Depth
image and contour points extracted according to Equation 1.

LRN

SOT

3D Object and RGB-D Camera Depth Image

0

0
0

0
0
0

Contour 
PointContour 

Point

(a)

3D Object and RGB-D Camera Depth Image

Contour 
Point

LRN

SOT

Contour 
Point

0

0
0

0
0

(b)

Fig. 3. (a) 3D cube and SOT feature. (b) 3D ball and SOT feature. From
left to right: 3D Object and the RGB-D camera; Depth image of the RGB-
D camera and SOT feature constructed for one contour point (red circle),
by uniformly sampling along the 2D contour normal line (red stars); The
corresponding oriented geodesic path on object surface in 3D with blue
arrows representing normals at sample locations. (Textures, though used in
SOT, are not displayed here for better visualization.)

the foreground, the calculated gradient ~gu naturally points
towards the object inside.

II. We sample in a view-invariant way by obtaining a 3D
Local Reference Normal (LRN) n̂LRN ∈ R3 at u. LRN
is calculated by using Principal Component Analysis (PCA)
[13] on all points within radius δR of u in 3D.

III. Starting from u, we traverse along an oriented line
defined by ~gu in the RGB-D image. We approximate the tra-
versed geodesic distance by accumulating distances between
consecutive depth pixels in 3D. Upon reaching pixel v after
traversing a distance of δstep on object surface, we calculate
the shape descent with respect to LRN at u as the dot product
du←v = (~pv − ~pu)T n̂LRN and normal compatibility with
respect to LRN at u as dot product cu←v = n̂T

v n̂LRN , where
~pv indicates the corresponding 3D point of pixel v. Besides
geometry, we also incorporate texture information and store
running average, starting from the last sample location, of R,
G, B colors as R̄v, Ḡv and B̄v respectively. Running average
is used to obtain a more robust estimate of texture. Finally
at the current sample location v, du←v, cu←v, R̄v, Ḡv and
B̄v are written into the SOT feature vector FSOT (u).

IV. Repeat step III until total number of γ samples are
obtained or until reaching a depth gap larger than DT , i.e.,
reaching the other side of the object boundary. In the latter
case, the remaining parts of FSOT (u) are filled with zeros.

C. Parameters and Characteristics of SOT

SOT feature has 4 parameters δR, DT , δstep and γ. The
first two parameters control the robustness of the LRN
estimation and define the maximum depth gap that SOT
can traverse through respectively. δstep represents the sample
distance on object surface and γ defines the length of SOT
feature vector FSOT (u). It is worth mention that δstep × γ
defines the maximum length we can traverse along an object
surface. Hence a small δstep × γstep fails to completely



1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

0.1

0.2

0.3

0.4

0.5

0.6

Histogram of the 3D cube SOT feature lengths

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

0.1

0.2

0.3

0.4

0.5

0.6

Histogram of the 3D ball SOT feature lengths

(b)

Fig. 4. (a) Histogram of the lengths of SOT features extracted from
multiple rendered depth images of the 3D cube at different view points. (b)
Histogram of the lengths of SOT features extracted from multiple rendered
depth images of the 3D ball at different view points.

traverse the object surface to capture enough discriminative
information for classification, while a large δstep × γstep
leaves many zeros in the back of feature vector and is
not computationally efficient. Parameter values are set in
Section IV.

SOT feature has 3 main characteristics:
I. It is invariant to in-plane rotations since we are using

image gradient at each contour point as the traverse orienta-
tion and all geometry information are sampled according to
the view-invariant LRN. It is also invariant to scale changes,
i.e., camera distance to the object center, since we are ap-
proximating the absolute geodesic distance while traversing.
Its view-invariant property against changes in other view
directions, however, depends on the shape of the underlying
object. That being said, we find in our experiments that this
shape related view dependency of SOT on each object is well
generalized by the classification algorithm.

II. It is computationally efficient as essentially we are
traversing along a 2D line and sampling a limited number of
locations. To be more specific, the complexity to construct
SOT for one contour point is O(N

1
2 ), where N is the total

number of image pixels, since a 2D line at most traverse
O(N

1
2 ) pixels and at each pixel only several arithmetic

operators are involved. Hence complexity for constructing
SOT features for all contour points in one image is O(N

3
2 ).

In practice, however, the complexity is O(N
1
2 γ) considering

that contour points from depth images are sparse and γ <<
N

1
2 .
III. SOT encodes the object’s global uniqueness. Besides

the shape descent, normal compatibility and running average
of colors along the oriented path, SOT also reveals the
total length of the traversed path before reaching the object
boundary on the other side, which is another intrinsic feature
for different objects. As shown in Figure 4, when setting the
same δstep, most 3D ball’s SOT features have either 9 or
10 steps, while most 3D cube’s SOT features have lengths
between 5 and 8.

D. Comparison with NARF

The NARF feature [27] is extracted from range images and
also incorporates contour information. However, our SOT
feature is substantially different and a detailed comparison
is given which illustrates not only the differences between

SOT and NARF but also the differences between SOT and
other 3D features in general.

I. NARF features are computed on interest points, and
while the extraction of interest points involves information
of object boundaries, the extracted interest points do not
necessarily lie on the contours depending on the support size
δ selected. SOT features, on the contrary, are calculated on
all contour points.

II. NARF feature, like other 3D features, is calculated
based on the information collected in a local neighborhood,
i.e., sphere, around the interest point. SOT feature, on the
contrary, is obtained by sampling along a path starting from
the contour point.

III. NARF feature uses depth information only. SOT fea-
ture, on the contrary, is multimodal and uses texture as well.
While most commodity 3D sensors come with a calibrated
RGB camera, a multimodal solution is proven to outperform
a unimodal one in the context of instance detection [10],
[16].

E. Classification, Saliency Map and Object Localization

Classification. A Random Forest is trained [5] to classify
all constructed SOT features. We use a Random Forest with
30 decision trees, and employ Gini impurity as the splitting
criterion. The tree depth is limited to 20 to prevent potential
over-fitting. Training images are collected by taking images
around instance of interest at different elevations (Sec-
tion IV). At the testing stage, each SOT feature FSOT (u)
is passed into the Random Forest and the corresponding
contour point u is assigned a posterior probability p(I|u)
of belonging to instance I after classification.

Saliency Map. A classified contour point u votes for the
instance saliency map by the following rules:

I. It votes the same saliency exp(p(I|u))D(u) to all its
local neighbors NL

u , which is decided by the following rules
II and III. D(u) is used to compensate for sparsity incurred
by distance. A higher p(I|u) produces a more salient region
NL

u .
II. Depth value of pixels in NL

u are restricted to be
within Dmax and Dmin which represent the maximum and
minimum depth values during traverse respectively. Pixels
with depth values outside the range are not regarded as
belonging to object and do not get the vote.

III. Pixels in NL
u are restricted to be within a radius of

‖u−m‖2 where m ∈ R2 is the 2D middle sample location
during traverse. Pixels outside the radius are not regarded as
belonging to object and do not get the vote.

Finally, for the saliency map S, its value at pixel v is
calculated as the sum of voting from all contour points, i.e.,
S(v) =

∑
u∈C

1(v ∈ NL
u ) exp(p(I|u))D(u) where 1() is the

indicator function. Examples of generated saliency maps are
shown in Figure 1 and Figure 8.

Object Localization. After reconstructing the saliency
map, we localize the instance of interest from it by iteratively
selecting and removing high salient regions. To know the
maximum size that the object may occupy in the RGB-D
image in advance, we store, for each pixel v, half of the



1

2

3

4

Fig. 5. Left: Saliency map; Right: 4 segmentations of the instance of
interest from the saliency map ranked according to the saliency value.

maximum traverse distance of all SOT features that vote for
v, i.e., D(v) = max

u∈C
1(v ∈ NL

u )LSOT (u)
2 , where LSOT (u)

represents the geodesic length of SOT feature FSOT (u). D
indicates, starting for each pixel, the approximate maximum
geodesic distance to safely traverse and stay on the object
surface. Our object localization algorithm works as follows:

I: Retrieve pixel z of the maximum saliency, i.e., z =
arg max

v
S(v).

II: Set z as the root node of a tree and perform Breadth
First Search (BFS) starting from z to propagate segmentation
to the entire tree. The propagation stops at a pixel if a depth
gap larger than DT is reached or its geodesic distance to the
root node is larger than D(z), i.e., when we are no longer
on the object.

III: All pixels of the tree rooted at z is one localization,
i.e., segmentation, of the instance. We remove the tree from
S by setting saliency of all tree pixels as 0, and repeat step
I until S is all zero.

As shown in Figure 5, our localization method provides
several segmentations of the instance from the saliency map,
and similar to [14], our segmentation of the object is in the
3D scene, instead of simply a 2D bounding box. The saliency
score of each segmentation is assigned as the maximum
saliency value within it. Example localization results are
shown in Figure 8 and Figure 10. For evaluation purposes, in
order to be consistent with other methods, we still assign a
bounding box to each segmentation. Bounding boxes of small
areas or low saliency scores are pruned. And a final Non-
Maximum Suppression (NMS) is performed on all bounding
boxes.

IV. EXPERIMENTS

For experiments, we evaluate our instance detection
method on a public RGB-D Object Dataset [16] (Section IV-
B) and our proposed FindMe RGB-D Dataset (Section IV-C).
Both datasets are collected with a commodity structured-light
3D sensor, i.e., Kinect [1], and no accurate 3D models of the
objects are provided. We compare our SOT-RF (i.e., Random
Forest on SOT) method with two popular instance detection
algorithms, i.e., a template-based method LINEMOD [10]
and a learning-based method HOG-SVM [16], [17] that
employs linear SVM [6] on concatenated RGB and Depth
HOG features [7].

A. Data Preprocessing

The depth image provided by the Kinect sensor contains
noisy data with holes. We preprocess the Kinect data in three
ways: 1) Apply a recursive median filter on depth image to
fill holes as proposed in [16]; 2) Smooth the depth image
and extract 3D surface normal per pixel as proposed in [10];
3) Smooth the estimated 2D contour normals, i.e., sampling
orientations, with a Gaussian filter to obtain more robust
estimation at each contour point.

B. RGB-D Object Dataset

The RGB-D Object Dataset [16] contains 8 individual
scenes for evaluating instance detection algorithms, where
each scene is a single video sequence consisting of multiple
RGB-D frames. These 8 scenes contain approximately 20
objects belonging to the larger RGB-D Object Dataset. To
get a more robust evaluation, we use the 10 objects (Figure 6)
where each of them appears in at least 2 scenes. Each
object, in the RGB-D Object Dataset, is represented by 3
sequences of RGB-D frames taken around the object at
different heights.

For SOT-RF and HOG-SVM, positive training samples are
from the instance’s RGB-D images while negative training
samples come from other objects’ RGB-D images as well
as those randomly sampled from the background scenes. For
LINEMOD, to generate multiple templates for each RGB-D
image, we construct a meshed points cloud from each RGB-
D image and render it in different camera pose combinations
[−15o, 0o, 15o] × [0.9m, 1.0m, 1.15m, 1.30m, 1.50m], with
the former representing variation of in-plane rotation and the
latter covering various distances between the camera and the
instance. Thus, we generate 15 templates per RGB-D image,
and by using approximately 300 RGB-D images for each
object, we obtain a total of roughly 5000 templates for each
object.

Parameters of SOT-RF are set as below: δR = 10mm,
δstep = 5mm for small objects (soda can, flashlight and
coffee mug), δstep = 15mm for large objects (cereal box,
cap and bowl), γ = 20 for all objects. Parameters are not
specifically tuned and work in a wide range.

For each object, we detect it in those test scenes it appears.
For each RGB-D image, we do not assume that the instance

Fig. 6. 10 objects from the RGB-D Object Dataset used for evaluation.
Top row: cereal box 1, cereal box 4, soda can 3, soda can 6, bowl 2; Bottom
row: cap 1, cap 4, flashlight 3, flashlight 5, coffee mug 1.



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

c
is

io
n

coffee mug 1

 

 

SOT-RF

SOT-SVM

HOG-SVM

LINEMOD
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Recall

P
re

c
is

io
n

flash light 5

 

 

SOT-RF

SOT-SVM

HOG-SVM

LINEMOD

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

c
is

io
n

flash light 3

 

 

SOT-RF

SOT-SVM

HOG-SVM

LINEMOD

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

c
is

io
n

soda can 6

 

 

SOT-RF

SOT-SVM

HOG-SVM

LINEMOD

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

c
is

io
n

soda can 3

 

 

SOT-RF

SOT-SVM

HOG-SVM

LINEMOD

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

c
is

io
n

bowl 2

 

 

SOT-RF

SOT-SVM

HOG-SVM

LINEMOD

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

c
is

io
n

cereal box 4

 

 

SOT-RF

SOT-SVM

HOG-SVM

LINEMOD

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

c
is

io
n

cereal box 1

 

 

SOT-RF

SOT-SVM

HOG-SVM

LINEMOD

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

c
is

io
n

cap 4

 

 

SOT-RF

SOT-SVM

HOG-SVM

LINEMOD

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

c
is

io
n

cap 1

 

 

SOT-RF

SOT-SVM

HOG-SVM

LINEMOD

Fig. 7. Precision-recall curves comparing performance of SOT-SVM+RF, SOT-SVM, HOG-SVM and LINEMOD on 10 objects in the RGB-D Object
Dataset.

(a) (b) (c)

Fig. 8. (a) Cereal box 1 detection in 3D scene. (b) Cap 4 detection in 3D scene. (c) Flashlight 5 detection in 3D scene. For each image, top left displays
the RGB image as well as the bounding box in green, bottom left shows the corresponding saliency map and right visualizes the 3D object detection result
(in red). HOG and LINEMOD fail to localize these objects due to severe partial-occlusions.

is unique and we keep all bounding boxes instead of only
the one with the highest score. To demonstrate the necessity
of using a more powerful, yet computationally expensive,
Random Forest as our learning algorithm, we compare with
a baseline method SOT-SVM which employs a linear SVM
to classify SOT features.

The precision-recall curves of different methods on the 10
objects are shown in Figure 7. SOT-RF clearly outperforms
SOT-SVM which indicates insufficiency in generalization
power of linear SVM. SOT-RF outperforms HOG-SVM and
LINEMOD on 8 out of 10 objects. For objects (flashlight),
when SOT-RF outperforms HOG-SVM and LINEMOD by
a large margin, it is primarily due to the fact that HOG-
SVM fails to generalize a reasonable model (the flashlight
looks substantially different in each view especially along
the azimuth direction when placed on table) while for
LINEMOD, many of its templates are easily confused with
edges from the background. For objects (cereal box, cap
and soda can), where SOT-RF outperforms HOG-SVM or
LINEMOD by a small margin, it is mainly because that
HOG-SVM and LINEMOD are holistic methods and fail to
deal with partial occlusions, while SOT-RF is feature-based
and performs well in those scenarios (Figure 8). SOT-RF
method performs slightly worse than HOG-SVM on concave
shape objects (bowl and coffee mug) mainly because that the
SOT feature fails to traverse through gap on object surface
incurred by its concavity and does not capture enough global

discriminative information.

C. FindMe RGB-D Dataset

To fully test the performance of our SOT-RF method in
the presence of cluttering, partial occlusion and large pose
variation, we collect the FindMe RGB-D Dataset of 10
objects. Data is collected similarly as the RGB-D Object
Dataset. We select 5 objects (cereal box, football, food bag,
ninja toy and tea can) and detect them in 4 different scenes.
Scene 1: Clean. We spread 5 objects over the table to prevent
partial-occlusions and collect data in a controlled camera
motion (Figure 10(a)). Scene 2: Large pose variation: We
collect the same data of 5 objects with a freely moving
camera, i.e. large in plane rotations and varying distance
to the table. Scene 3: Partial-occlusion: We put the other
5 objects on the same table to create a cluttered scene
where objects might be partially occluded, and collect data
in a controlled camera motion. Scene 4: Partial-occlusion
and large pose variation: We collect the same data of
cluttered scene with a freely moving camera (Figure 10(b)).
For each scenario, approximately 500 frames are collected
and evaluated.

For a fair comparison with LINEMOD in the scenes
with wild camera motion, we render each RGB-D im-
age in 60 different combinations [0o : 30o : 330o] ×
[0.9m, 1.0m, 1.15m, 1.30m, 1.50m], i.e. we fully cover the
in-plane rotation variations. We collect approximately 20,000



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

c
is

io
n

Tea can

 

 

SOT-RF

HOG-SVM

LINEMOD

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

c
is

io
n

Ninja toy

 

 

SOT-RF

HOG-SVM

LINEMOD

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

c
is

io
n

Food bag

 

 

SOT-RF

HOG-SVM

LINEMOD

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

c
is

io
n

Football

 

 

SOT-RF

HOG-SVM

LINEMOD

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

c
is

io
n

Cereal box

 

 

SOT-RF

HOG-SVM

LINEMOD

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

c
is

io
n

Tea can

 

 

SOT-RF

HOG-SVM

LINEMOD

LINEMOD+

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

c
is

io
n

Ninja toy

 

 

SOT-RF

HOG-SVM

LINEMOD

LINEMOD+

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

c
is

io
n

Food bag

 

 

SOT-RF

HOG-SVM

LINEMOD

LINEMOD+

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

c
is

io
n

Football

 

 

SOT-RF

HOG-SVM

LINEMOD

LINEMOD+

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

c
is

io
n

Cereal box

 

 

SOT-RF

HOG-SVM

LINEMOD

LINEMOD+

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

c
is

io
n

Tea can

 

 

SOT-RF

HOG-SVM

LINEMOD

LINEMOD+

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

c
is

io
n

Ninja toy

 

 

SOT-RF

HOG-SVM

LINEMOD

LINEMOD+

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

c
is

io
n

Food bag

 

 

SOT-RF

HOG-SVM

LINEMOD

LINEMOD+

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

c
is

io
n

Football

 

 

SOT-RF

HOG-SVM

LINEMOD

LINEMOD+

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

c
is

io
n

Cereal box

 

 

SOT-RF

HOG-SVM

LINEMOD

LINEMOD+

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

c
is

io
n

Tea can

 

 

SOT-RF

HOG-SVM

LINEMOD

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

c
is

io
n

Ninja toy

 

 

SOT-RF

HOG-SVM

LINEMOD

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

c
is

io
n

Food bag

 

 

SOT-RF

HOG-SVM

LINEMOD

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

c
is

io
n

Football

 

 

SOT-RF

HOG-SVM

LINEMOD

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

c
is

io
n

Cereal box

 

 

SOT-RF

HOG-SVM

LINEMOD

Fig. 9. From top row to bottom row: precision-recall curves comparing SOT-SVM+RF, HOG-SVM, LINEMOD and LINEMOD+ on 5 objects in scenarios
1 to 4 of FindMe RGB-D Dataset.

(a) (b)

Fig. 10. (a) Example detection result of scenario 1. (b) Example detection result of scenario 4. For each example, top left displays the RGB image with
the detected 2D bounding boxes, bottom left shows the depth image and right visualizes the 3D scene as well as 3D detection results in different colors.

templates for each object and denote this method as
LINEMOD+. LINEMOD+ is evaluated in scene 2 and scene
4 to overcome all different object poses seen by a freely
moving camera. For SOT-RF, we set δstep = 12mm and
γ = 20 for all objects while other parameters remain the
same.

Figure 9 shows the comparative results. For scene 1, all 3
methods exhibit similar high performance on food bag, ninja
toy and tea can, as there is no occlusion and the camera
moves in a controlled manner. HOG-SVM and LINEMOD,
however, fail to detect thin side of the cereal box as well
as non-rigidity of the food bag even in a clean set-up.

Though performance of HOG-SVM and LINEMOD remains
competitive on specific objects when either free camera
motion or partial-occlusions are added, none of them reaches
the same performance level of our SOT-RF method when
partial-occlusions and free camera motion are combined as
in scene 4. Also adding more templates to LINEMOD does
not guarantee an increase in performance, as incorporating
more templates causes a higher chance of confusion with
either background or other objects. To sum up, our feature-
based SOT-RF method can correctly localize all 5 objects in
a cluttered scene even in a novel view (Figure 10(b)).

On average our current CPU implementation preprocess



data in 135ms, extract contour points and construct SOT
features in 12ms, perform binary classification in 110ms,
generate saliency map and localize the object in 37ms. This
leads to a total time of 135ms + 12ms + 5 × (110ms +
37ms) = 882ms to detect 5 objects in a single RGB-D
image. Since each SOT feature is constructed, classified and
used for voting independently from each other, we believe
that a GPU implementation will easily run in real time.

D. Discussion and Limitations

Specifically, our proposed SOT feature can be directly em-
ployed on service robots, designed for visually impaired and
possibly mounted on a helmet, to help them localize common
items of interest in their surroundings. In this scenario, near-
real-time 3D object instance detection in cluttered, noisy
RGB-D images, captured via head mounted sensors in a free
egocentric motion, is essential to be of utility to visually
impaired people. One future application of SOT features
thus includes integration into a wearable visual aid system
that combines scene/context recognition, robust real-time 3D
object detection/recognition, and auditory feedback cues, to
help guide visually impaired users to desired items around
them on cluttered office desks or pantry shelves, similar to
the complex evaluation tests presented here with the RGB-D
Object Dataset and the proposed FindMe RGB-D Dataset.

As a limitation, currently our SOT feature works well
on objects of well shaped boundaries and distinguishable
textures, while applies poorly to thin objects or objects with
deep concavity, since SOT fails to traverse through the object
surface to collect enough discriminative features. We believe
that, however, our pixel-wise method is complementary to the
traditional holistic methods and combining both will lead to
a better detection performance.

V. CONCLUSION

We have proposed a novel Surface Oriented Traverse
(SOT) 3D feature and a solid framework to address robust
instance detection in RGB-D. Our method takes noisy data
from commodity sensors as input and performs well in
the presence of cluttering, partial occlusion, and large pose
variation.

REFERENCES

[1] “Microsoft kinect for windows,” http://www.xbox.com/en-US/kinect.
[2] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust

features,” in ECCV. Springer, 2006, pp. 404–417.
[3] S. Belongie, J. Malik, and J. Puzicha, “Shape matching and object

recognition using shape contexts,” Pattern Analysis and Machine
Intelligence, IEEE Transactions on, vol. 24, no. 4, pp. 509–522, 2002.

[4] U. Bonde, V. Badrinarayanan, and R. Cipolla, “Robust instance
recognition in presence of occlusion and clutter,” in ECCV. Springer,
2014, pp. 520–535.

[5] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[6] C.-C. Chang and C.-J. Lin, “Libsvm: a library for support vector
machines,” ACM Transactions on Intelligent Systems and Technology
(TIST), vol. 2, no. 3, p. 27, 2011.

[7] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in CVPR, vol. 1. IEEE, 2005, pp. 886–893.

[8] A. Frome, D. Huber, R. Kolluri, T. Bülow, and J. Malik, “Recognizing
objects in range data using regional point descriptors,” in ECCV.
Springer, 2004, pp. 224–237.

[9] Y. Guo, F. Sohel, M. Bennamoun, M. Lu, and J. Wan, “Rotational
projection statistics for 3d local surface description and object recog-
nition,” International journal of computer vision, vol. 105, no. 1, pp.
63–86, 2013.

[10] S. Hinterstoisser, S. Holzer, C. Cagniart, S. Ilic, K. Konolige,
N. Navab, and V. Lepetit, “Multimodal templates for real-time de-
tection of texture-less objects in heavily cluttered scenes,” in ICCV.
IEEE, 2011, pp. 858–865.

[11] S. Hinterstoisser, V. Lepetit, S. Ilic, S. Holzer, G. Bradski, K. Konolige,
and N. Navab, “Model based training, detection and pose estimation
of texture-less 3d objects in heavily cluttered scenes,” in ACCV 2013.
Springer, 2013, pp. 548–562.

[12] A. E. Johnson and M. Hebert, “Using spin images for efficient object
recognition in cluttered 3d scenes,” Pattern Analysis and Machine
Intelligence, IEEE Transactions on, vol. 21, no. 5, pp. 433–449, 1999.

[13] I. Jolliffe, Principal component analysis. Wiley Online Library, 2005.
[14] B.-s. Kim, S. Xu, and S. Savarese, “Accurate localization of 3d objects

from rgb-d data using segmentation hypotheses,” in CVPR. IEEE,
2013, pp. 3182–3189.

[15] J. Knopp, M. Prasad, G. Willems, R. Timofte, and L. Van Gool,
“Hough transform and 3d surf for robust three dimensional classi-
fication,” in ECCV. Springer, 2010, pp. 589–602.

[16] K. Lai, L. Bo, X. Ren, and D. Fox, “A large-scale hierarchical multi-
view rgb-d object dataset,” in Robotics and Automation (ICRA), 2011
IEEE International Conference on. IEEE, 2011, pp. 1817–1824.

[17] K. Lai, L. Bo, X. Ren, and D. Fox, “Detection-based object labeling
in 3d scenes,” in Robotics and Automation (ICRA), 2012 IEEE
International Conference on. IEEE, 2012, pp. 1330–1337.

[18] D. G. Lowe, “Object recognition from local scale-invariant features,”
in ICCV, vol. 2. IEEE, 1999, pp. 1150–1157.

[19] D. Meger, C. Wojek, J. J. Little, and B. Schiele, “Explicit occlusion
reasoning for 3d object detection.” in BMVC. Citeseer, 2011, pp.
1–11.

[20] R. A. Newcombe, A. J. Davison, S. Izadi, P. Kohli, O. Hilliges,
J. Shotton, D. Molyneaux, S. Hodges, D. Kim, and A. Fitzgibbon,
“Kinectfusion: Real-time dense surface mapping and tracking,” in
Mixed and augmented reality (ISMAR), 2011 10th IEEE international
symposium on. IEEE, 2011, pp. 127–136.

[21] B. Pepik, M. Stark, P. Gehler, and B. Schiele, “Teaching 3d geometry
to deformable part models,” in CVPR. IEEE, 2012, pp. 3362–3369.

[22] R. Rios-Cabrera and T. Tuytelaars, “Discriminatively trained templates
for 3d object detection: A real time scalable approach,” in ICCV.
IEEE, 2013, pp. 2048–2055.

[23] R. B. Rusu, N. Blodow, and M. Beetz, “Fast point feature histograms
(fpfh) for 3d registration,” in Robotics and Automation (ICRA), 2009
IEEE International Conference on. IEEE, 2009, pp. 3212–3217.

[24] J. Smisek, M. Jancosek, and T. Pajdla, “3d with kinect,” in Consumer
Depth Cameras for Computer Vision. Springer, 2013, pp. 3–25.

[25] S. Song and J. Xiao, “Sliding shapes for 3d object detection in depth
images,” in ECCV. Springer, 2014, pp. 634–651.

[26] B. Steder, G. Grisetti, M. Van Loock, and W. Burgard, “Robust on-
line model-based object detection from range images,” in Intelligent
Robots and Systems (IROS), 2009 IEEE/RSJ International Conference
on. IEEE, 2009, pp. 4739–4744.

[27] B. Steder, R. B. Rusu, K. Konolige, and W. Burgard, “Point feature
extraction on 3d range scans taking into account object boundaries,” in
Robotics and Automation (ICRA), 2011 IEEE International Conference
on. IEEE, 2011, pp. 2601–2608.

[28] F. Stein and G. Medioni, “Structural indexing: Efficient 3-d object
recognition,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 14, no. 2, pp. 125–145, 1992.

[29] S. Stiene, K. Lingemann, A. Nuchter, and J. Hertzberg, “Contour-
based object detection in range images,” in 3D Data Processing,
Visualization, and Transmission, Third International Symposium on.
IEEE, 2006, pp. 168–175.

[30] A. Tejani, D. Tang, R. Kouskouridas, and T.-K. Kim, “Latent-class
hough forests for 3d object detection and pose estimation,” in ECCV.
Springer, 2014, pp. 462–477.

[31] F. Tombari, S. Salti, and L. Di Stefano, “Unique signatures of
histograms for local surface description,” in ECCV. Springer, 2010,
pp. 356–369.


