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Abstract

We present an approach to efficiently learn an accurate
and complete 3D face model from a single image. Previous
methods heavily rely on 3D Morphable Models to populate
the facial shape space as well as an over-simplified shading
model for image formulation. By contrast, our method di-
rectly augments a large set of 3D faces from a compact col-
lection of facial scans and employs a high-quality render-
ing engine to synthesize the corresponding photo-realistic
facial images. We first use a deep neural network to regress
vertex coordinates from the given image and then refine
them by a non-rigid deformation process to more accurately
capture local shape similarity. We have conducted extensive
experiments to demonstrate the superiority of the proposed
approach on 2D-to-3D facial shape inference, especially its
excellent generalization property on real-world selfie im-
ages.

1. Introduction

Acquiring high quality 3D face models is an essen-
tial task in many vision applications including virtual re-
ality/augmented reality, teleconferencing, virtual try-on,
computer games, special effect, and so on. A common prac-
tice, adopted by most professional production studios, is to
manually create avatars from 3D scans or photo references
by skillful artists. This process is often time consuming and
labor intensive because each model requires days of man-
ual processing and touching-up. It is desirable to automate
the process of 3D model generation by leveraging rapid
advances in computer vision/graphics and image/geometry
processing.

Inferring a 3D face from a single image is challenging
due to the lack of publicly available 3D face data, as well as
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Figure 1: Sample outputs of our proposed method. From
left to right: input image, inferred shape model that is accu-
rate, efficient and complete, model with transferred texture

the intrinsic ambiguity of image formulation process. Con-
ventional wisdom attempts to address this issue by employ-
ing 3D Morphable Model (3DMM) [3] to explain the space
of face shape variations, and by using a simplified shad-
ing model [1, 25] to simulate the process of image formula-
tion. More recently, several deep learning based approaches
have been proposed - either in a supervised setup to directly
regress the 3DMM parameters [42, 9, 36] or in an unsuper-
vised fashion [32, 14, 26] with the help of a differentiable
rendering process. These methods are mostly limited by the
expressiveness of the underlying 3DMM representation as
well as the realism of the rendering process.

To meet those challenges, we propose two novel alterna-
tives. First, instead of relying on the 3DMM representation
to populate the face space, we directly augment a large col-
lection of 3D faces from a small collection of facial scans
by using the deformation representation feature. This pro-
cess better interpolates the space of shape variations and
leads to more accurate 2D-3D shape inference. Second, in-
stead of adopting an over-simplified rendering process, we
use an off-the-shelf high quality rendering engine to gen-
erate photo-realistic facial images. Our approach is capa-
ble of more accurately characterizing real-world complex-
ities (e.g., sub-surface scattering, shadows caused by self-
occlusion and skin-related reflectance [7]).

We train a deep neural network to directly regress vertex
coordinates of a generic head model from the given image.
To improve the generalization ability and robustness of the
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trained model, we propose to first extract deep facial iden-
tity features [30, 21] which encodes each face into a unique
latent representation (similar to [14]) and then decode the
latent representation to a 3D face. Given the regressed 3D
face model with neutral facial expression in a canonical co-
ordinate system, we further optimize for camera intrinsic,
pose, facial expression, as well as a per-vertex displace-
ment field. Our approach is capable of better capturing lo-
cal shape similarity and enabling faithful texture transfer
via camera projections. Extensive experiments demonstrate
the superiority of the proposed approach for 2D-to-3D fa-
cial shape inference, especially its excellent generalization
property on real-world selfie images. When trained on a
small number of 512 subjects, our approach can outperform
the current state-of-the-art [12] trained on 10,000 real facial
scans.

Our key contributions can be summarized as follows:
• A novel scheme of photo-realistic facial synthesis, by

using high quality rendering on augmented shapes from a
small collection of facial scans, for training facial shape in-
ference.
• An efficient method for generating an accurate and

complete 3D face model with texture from a single image
by using a combination of deep neural network for shape re-
gression and optimization for shape refinement and texture
transfer.
• Extensive experimental evaluation against other bench-

marks and ablation study to demonstrate the superiority of
the propose method on 2D-to-3D shape inference.

2. Related Works
3D Face Representation: 3D Morphable Model

(3DMM) [3] uses Principal Component Analysis (PCA) on
aligned 3D neutral faces to reduce the dimension of 3D
face representation making the face fitting problem more
tractable. The FaceWareHouse technique [6] enhances the
original PCA-based neutral face model with expressions by
applying multi-linear analysis [37] to a large collection of
4D facial scans captured with RGB-D sensors. The quality
of multi-linear model was further improved in [4] by jointly
optimizing the model and the group-wise registration of 3D
scans. In [5], a Large Scale Facial Model with 10,000 faces
was generated to maximize the coverage of gender and eth-
nics. The training data was further enlarged in [20], which
created a linear shape space trained from 4D scans of 3800
human heads. More recently, a non-linear model was pro-
posed in [34] from a large set of unconstrained face images
without the necessity of collecting 3D face scans.

Fitting via Inverse Rendering: Inverse rendering [1, 3]
formulates 3D face modeling as an optimization problem
over the entire parameter space seeking the best fitting for
the observed image. In addition to pixel intensity values,
other constraints such as facial landmarks and edge con-

tours, are exploited for more accurate fitting [25]. More re-
cently, GanFit [12] used a generative neural network for fa-
cial texture modeling and utilized an additional facial iden-
tity loss function in the optimization formulation. The in-
verse rendering based modeling approach has been widely
used in many applications [40, 15, 33, 13].

Supervised Shape Regression: Convolutional Neural
Network (CNN) based approaches have been proposed to
directly map an input image to the parameters of a 3D face
model such as 3DMM [8, 42, 18, 35, 41]. In [16], a volu-
metric representation was learned from an input image. In
[28], an input color image was mapped to a depth image
using an image translation network. In [9], a network was
proposed to jointly reconstruct the 3D facial structure and
provide dense alignment in the UV space. The work of [36]
took a layered approach toward decoupling low-frequency
geometry from its mid-level details estimated by a shape-
from-shading approach. It is worth mentioning that many
CNN-based approaches use facial shape estimated by in-
verse rendering as the ground truth during training. In [24],
a 3D face model is learnt from synthetically rendered im-
ages. Unlike their facial synthesis approach, we employ
photo-realistic rendering on augmented facial shapes.

Unsupervised Learning: Most recently, face model-
ing from images via unsupervised learning becomes pop-
ular because it affords almost unlimited amount of data for
training. An image formation layer was introduced in [32]
as the decoder jointly working with an auto-encoder archi-
tecture for end-to-end unsupervised training. SfSNet [29]
explicitly decomposes an input image into albedo, normal
and lighting components, which are then composed back
to approximate the original input image. 3DMM parame-
ters were first directly learned in [14] from facial identity
encoding and then the problem of parameter optimization
was formulated in an unsupervised fashion by introducing a
differentiable renderer and a facial identity loss on the ren-
dered facial image. A multi-level face model, (i.e., 3DMM
with corrective field) was developed in [31] following an
inverse rendering setup that explicitly models geometry, re-
flectance and illumination per vertex.

Deep Facial Identity Feature: Recent advances in face
recognition [30, 21, 27] attempt to encode all facial images
of the same subject under different conditions into identi-
cal feature representations, namely deep facial identity fea-
tures. Several attempts have been made to utilize this ro-
bust feature representation for face modeling. GanFit [12]
used an additional deep facial identity loss to the commonly
used landmark and pixel intensity losses. In [14], 3DMM
parameters were directly learned from deep facial features.
Although our shape regression network is similar to theirs,
the choice of training data is different. Unlike their unsu-
pervised setting, we opt to work with supervision by syn-
thetically rendered facial images.



3. Proposed Method

3.1. Overview

An overview of the proposed method is shown in Fig-
ure 2. To facilitate facial image synthesis (Section 3.2) for
training a shape regression neural network (Section 3.3), we
have collected and processed a prioritized 3D face dataset,
from which we can sample augmented 3D face shape with
UV-texture to render a large collection of photo-realistic fa-
cial images. During testing, the input image is first used
to directly regress the 3D vertex coordinates of a 3D face
model with the given topology, which are furthered refined
to fit the input image with a per-vertex non-rigid deforma-
tion approach (Section 3.4.1). Upon accurate fitting, selfie
texture is projected to the UV space to infer a complete tex-
ture map (Section 3.4.2).

3.2. Photo-Realistic Facial Synthesis

3.2.1 3D Scan Database

. The most widely used Basel Face Model (BFM) [22]
has two major drawbacks. First, it consists of 200 sub-
jects but mainly Caucasian, which might lead to biased face
shape estimation. Second, each face is represented by a
dense model with high polygon count, per-vertex texture
appearance and frontal face only, which limits its use for
production-level real-time rendering. To overcome these
limitations, we have collected a total of 512 subjects using
a professional-grade multi-camera stereo scanner (3dMD
LLC, Atlanta 1) across different gender and ethnicity as
shown in Table 1.

Sex/Ethnicity White Asian Black Total
Male 82 / 5 178 / 5 8 / 5 268 / 15

Female 45 / 5 164 / 5 5 / 5 214 / 15
Total 127 / 10 342 / 10 13 / 10 482 / 30

Table 1: The distribution of gender and ethnicity in our
database. Note that we randomly select 5 subjects for each
group for testing and the rest subjects are used for training
and validation.

As shown in Figure 3, we process a raw textured 3D fa-
cial scan data to generate our 3D face representation that
consists of a shape model with low polygon count and a
high-resolution diffuse map for preserving details. A face
representation containing a head model of 2925 vertices and
a diffuse map sized by 2048× 2048 is used. We take a non-
rigid alignment approach [6] of deforming a generic head
model to match the captured facial scan. Then we transfer
the texture onto the generic model’s UV space. With further

1http://www.3dmd.com/

manual artistic touch up, we obtain the final high-fidelity
diffuse map.

3.2.2 Data Augmentation

482 subjects are far from enough to cover all possible fa-
cial shape variations. While it is expensive to collect thou-
sands of high-quality facial scans, we adopt an alternative
shape augmentation approach to improve the generaliza-
tion ability of the trained neural network. First, we adopt
a recent deformation representation (DR) [38, 11] to model
a 3D facial mesh P. DR feature encodes the i-th vertex
Pi = [P i

x, P
i
y, P

i
z ] as a R9 vector. Hence the DR feature

of the entire mesh is represented as a vector D ∈ R|P|×9.
D encodes local deformation around each vertex of P with
respect to a reference mesh PR into a R9 vector. We use
the mean face of all 482 processed facial models as the ref-
erence mesh.

Encode D from P We denote the i-th vertex as pi and
pR
i respectively. The deformation gradient in the clos-

est neighborhood Ni of the i-th vertex from the reference
model to the deformed model is defined by the affine trans-
formation matrix Ti that minimizes the following energy

E(Ti) =
∑
i∈Ni

cij‖(pi − pj)−Ti(p
R
i − pR

j )‖2, (1)

where cij is the cotangent weight depending on the refer-
ence model to handle irregular tessellation. With polar de-
composition, Ti is decomposed into a rotation component
Ri and a scaling/shear component Si such that Ti = RiSi.
The rotation matrix can be represented with a rotation axis
ωi and rotation angle θi pair, and we further convert them
to the matrix logarithm representation:

logRi = θi

 0 −ωi,z ωi,y

ωi,z 0 −ωi,x

−ωi,y ωi,x 0

 . (2)

Finally the DR feature for pi is represented by di =
{logRi;Si−I}where I is the identity matrix. Since ‖ωi‖ =
1 and Si is symmetric, di has 9 DoF.

Recover P from D Given the DR feature D and the ref-
erence mesh PR, we first recover the affine transformation
Ti for each vertex. Then we try to recover the optimal P
that minimizes:

E(P) =
∑
pi∈P

∑
j∈Ni

cij‖(pi − pj)−Ti(p
R
i − pR

j )‖2. (3)

For each pi, we obtain it by solving ∂E(P)
∂pi

= 0 which
gives

2
∑
j∈Ni

cij(pi − pj) =
∑
j∈Ni

Ti(p
R
i − pR

j ). (4)
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Figure 2: Overview of the proposed approach. During training, we learn a shape regression neural network on photo-realistic
synthetic facial images. During testing, we infer a low polygon count shape model with a UV diffuse map generated from
the projected texture.

Figure 3: (left-most) a raw facial scan with dense topol-
ogy, (left) the model with UV texture; (right) the processed
face model with sparse topology, and (right-most) the model
with UV texture.

The resulting equations for all pi ∈ P lead to a linear
system which can be written as AP = b. By specifying the
position of one vertex, we can get the single solution to the
equation to fully recover P.

Upon obtaining a set of DR features as (D1, ...,DN )
where N is the total number of subjects, we follow [17]
to sample new DR features. More specifically, we sample
a vector (r, θ1, ..., θm1

) in Polar coordinates, where r ob-
serves a uniform distribution U[0.6, 1.3] and θi follows uni-
form distribution U[0, π/2]. We calculate its correspond-
ing Cartesian coordinates (a1, a2, ..., am) and interpolate
the sampled DR features as

∑m
i=1 aiDi, from which we

further calculate the corresponding facial mesh. Note that
the sampling in this paper is under a different scenario than
[17], which inferring 3D faces from 2D images. In our ex-
periments, we use m = 5 and only select samples from
the same gender and ethnicity for blending. We gener-
ate 10,000 new 3D faces with a ratio of 0.65/0.30/0.05
across Asian/Caucasian/Black and a ratio of 0.5/0.5 across
Male/Female.

Synthetic Rendering For each new sampled face, we as-
sign its UV texture by choosing the closest 3D face in the
same ethnicity and gender from existing 482 subjects. We

use an off-the-shelf high quality rendering engine V-ray 2.
With artistic assistance, we set up a shader graph to ren-
der photo-realistic facial images given a custom diffuse map
and a generic specular map. We manually set up 30 differ-
ent lighting conditions and further randomize head rotation
[−15

◦
,+15

◦
] in roll, yaw and pitch. The background of

rendered images are randomized with a large collection of
indoor and outdoor images. We opt not to render eye mod-
els and mask out the eye areas when testing by using de-
tected local eye landmarks. Please see the supplementary
materials for more details.

3.3. Regressing Vertex Coordinates

Our shape regression network consists of a feature en-
coder and a shape decoder. Deep facial identity feature is
known for its robustness under varying conditions such as
lighting, head pose and facial expression, providing a nat-
urally ideal option for the encoded feature. Although any
off-the-shelf facial recognition network would be sufficient
for our task, we propose to adopt Light CNN-29V2 [39] due
to its good balance between network size and encoding ef-
ficiency. A pre-trained Light CNN-29V2 model is used to
encode an input image into a 256-dimensional feature vec-
tor. We have used a weighted per-vertex L1 loss: weight of
5 for vertices on the facial area (within a radius of 95mm
from the nose tip) and weight of 1 for other vertices.

For shape decoder, we have used three fully connected
(FC) layers, with the output size of 128, 200 and 8,775
respectively. The last FC layer directly predicts concate-
nated vertex coordinates of a generic head model consisting
of 2,925 points, and it is initialized with 200 pre-computed
PCA components explaining more than 99% of the variance
observed in the 10,000 augmented 3D facial shapes.

2https://vray.us/

https://vray.us/


3.4. Refinement and Texture Transfer

3.4.1 Non-rigid Deformation

3D vertex coordinates generated by the shape regression
neural network is not directly applicable to texture projec-
tion because facial images usually contain unknown factors
such as camera intrinsic, head pose and facial expression.
Meanwhile, since shape regression predicts the overall fa-
cial shape, local parts such as eyes, nose and mouth are not
accurately reconstructed; but they are equally important to
quality perception when comparing against the original face
image. We propose to utilize facial landmarks detected in
a coarse-to-fine fashion and formulate non-rigid deforma-
tion as an optimization problem that jointly optimizes over
camera intrinsic, camera extrinsic, facial expression and a
per-vertex displacement field. Please see the supplementary
material for more details.

3.4.2 Texture Processing

Upon non-rigid deformation, we project selfie texture to the
UV space of the generic model using the estimated camera
intrinsic, head pose, facial expression and per-vertex correc-
tion. While usually only the frontal area on a selfie is vis-
ible, we recover textures on other areas, e.g., back of head
and neck, by using the UV texture of one of the 482 subjects
that is closest to the query subject. We define closeness as
L1 loss on the distance between LightCNN-29V2 embed-
dings, (i.e, through face recognition). Finally given a fore-
ground projected texture and a background default texture,
we blend them using the Poisson Image Editing [23].

4. Experimental Results
4.1. Implementation Details

For shape regression, we use Adam optimizer with a
learning rate of 0.0001 and the momentum β1 = 0.5,
β2 = 0.999 for 500 epochs. We train on a total of 10,000
synthetically rendered facial images with a batch size of 64.

4.2. Database and Evaluation Setup

Stirling/ESRC 3D Faces Database: The ESRC [10] is
the latest public 3D faces database captured by a Di3D cam-
era system. The database also provides several images cap-
tured from different viewpoints under various lighting con-
dition. We select those subjects who have both 3D scan and
a frontal neutral face for evaluation. There are total 129
subjects (62 male and 67 female) for testing. Note that in
this dataset, around 95% of people are Caucasian.

JNU-Validation Database: The JNU-Validation
Database is a part of the JNU 3D face Database collected
by the Jiangnan University [19]. It has 161 2D images
of 10 Asians and their 3D face scans captured by 3dMD.

Since the validation database was not used during training,
we consider it as a test database for Asians. The 2D images
of each subject are in range of [3, 26]. To minimize the
impact of imbalance data, we select three frontal images of
each subject for quantitative comparison.

Our Test Data Since there is no public database avail-
able for testing, which shall cover all the gender and races,
we randomly pick five subjects from the six group in Table 1
and form a total 30 subjects as the evaluation database. The
other 482 scans are used as for data augmentation and train-
ing/validation stage for both geometry and texture. Each
subject has two testing images: a selfie captured by a Sam-
sung Galaxy S7 and an image captured from a Sony a7R
DSLR camera by a photographer.

Evaluation Setup: We compared our method with sev-
eral state-of-the-art-methods including 3DMM-CNN [35],
Extreme 3D Face (E3D) [36], PRNet [9], RingNet [26], and
GanFit [12]. The reconstructed model detail of each meth-
ods are shown in Table 2. Note that for our method and
RingNet, both eyes, teeth and tongue and their model hold-
ers are removed before comparison. Because the evaluation
metric is using the point-to-plane error, unrelated data will
increase the over all error. Although removing those parts
will also slightly increase the error (e.g., no data in the eyes
area to compare), the introduced error is much smaller than
the error of directly using the original models. For a fair
comparison with all other methods, unless clearly stated,
evaluation numbers of our method is without the estimated
per-vertex displacement field.

4.3. Quantitative Comparison

Evaluation Metric: To align the reconstructed model
with ground truth, we followed the step of [35, 14, 12] and
the challenge [10]. Since the topology of each method is
fixed, seven pre-selected vertex index is first used to roughly
align the reconstructed model to the ground truth and then
the model was further refined by iterative closest point (ICP)
[2]. The position of vertex of the tip of the nose vt is cho-
sen to be the center of the ground truth and reconstructed
models. Given a threshold d mm, we discard those vertex
vi, where ||vi − vt|| > d. To evaluate the reconstructed
model with ground truth, we used the Average Root Mean
Square Error (ARMSE) 3 as suggested by the 2nd 3DFAW
Challenge 4 , where it computes the closest point-to-mesh
distance between the ground truth and predicted model and
vice versa.

ESRC and JNU-validation Dataset: In Figure 4, we
have chosen d = [80, 90, 100, 110] and computed the
ARMSE for each reconstructed model and ground truth.
Note that the annotation provided by ESRC database only

3https://codalab.lri.fr/competitions/572#learn_
the_details-evaluation

4https://3dfaw.github.io/

https://codalab.lri.fr/competitions/572#learn_the_details-evaluation
https://codalab.lri.fr/competitions/572#learn_the_details-evaluation
https://3dfaw.github.io/


Ours RingNet [26] GanFit [12] PRNet [9] E3D [36] 3DMM-CNN [35]
Full Head Yes Yes No No No No

Vertex 2.9K (2.7K) 5.0K (3.8K) 53.2K 43.7K ∼155K 47.0K
Face 5.8K (5.3K) 10.0 K (7.4K) 105.8K 86.9K ∼150K 93.3K

Table 2: The geometric complexity of our method and other method. Note that except E3D, the other methods used the same
topology for their reconstructed model. The number inside the parentheses in both our method and RingNet are the details of
head models after unrelated mesh removal.
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Figure 4: The quantitative results of our method compare to
3DMM-CNN [35], E3D [36], PRNet [9] and RingNet [26]
on both ESRC and JNU-Validation database.

has the seven landmark for alignment, thus instead of us-
ing the tip of nose, we use the average of the 7 landmark
as the center of face. In ESRC, our result is better than
other methods when d > 95 and our performance is more
resilient as d increases. This indicates that our method can
better replicate the shape of the entire head than other meth-
ods. In JNU-validation database, since other methods are
trained from a Caucasian-dominated 3DMM model, while
the other races are also considered during our augmented
stage, we can achieve much smaller reconstructed error at
every d value.

Our Test Dataset: In Figure 5 (a), the centers of each
error-bar are the average of the ARMSE from the 60 recon-
structed meshes. The range of the errorbar is ±1.96× SE,
where SE is the standard error. It is shown that our re-
constructed models is slightly better than GanFit and sig-
nificantly better than other methods. It is worth mention-
ing that our vertex number is only ∼ 70% of RingNet and
less than 6% of other methods. In Figure 5 (b), the cropped
mesh of the ground truth and each methods are shown under
different threshold of d. To utilize the reconstructed mod-
els for real-world application, we believe that d = 110 is
the best value because it captured the entire head instead of
the frontal face. We further investigate the performance un-
der different races and the results are shown in Figure 5 (c).
Our method can correctly replicate the model to under 2.5
mm of error in all ethnicity, while other methods such as
RingNet and PRNet are very sensitive to the ethnicity dif-
ferences. Although GanFit performed slightly better than
our method on White and Black races, the overall perfor-

mance is not as good as ours because they are not able to
recover the Asian geometries well. It is worth noting that
we used 10000 synthetic images augmented from less than
500 scan data, which is only 5% of the data used in Gan-
Fit. To fairly visualize the error between methods without
the effect of different topology, we find the closest point-
to-plane distance from ground truth to reconstructed model
and generate the heat-map for each method in Figure 6.

4.4. Ablation Study

To demonstrate the effectiveness of the individual mod-
ules in the proposed approach, we modify one variable at a
time and compare with the following alternatives:
• No Augmentation (No-Aug): Without any augmenta-

tion, we simply repetitively sample 10,000 faces from 482
subjects.
• 3DMM Augmentation with class (3DMM-C): In-

stead of DR Feature based sampling, we propose a 3DMM
based shape augmentation method considering race and
gender. We train a 3DMM representation from 482 subjects,
and for each group in Table 1, a Gaussian random vector
x ∼ N (µi, Σ2

i ) is used to create weights of the principal
shape components, where µi and Σ2

i are the mean vector
and co-variance matrix of those coefficients in the group.
We sample 10,000 faces with this augmentation approach.
• Game engine Rendering (Unity): Instead of using

high-quality photo-realistic renderer, we use Unity, a stan-
dard game rendering engine, to synthesize facial images.
The quality of rendered images are comparatively lower
than V-ray. We keep the DR feature based augmentation ap-
proach and rendered exactly the same 10000 synthetic faces
mentioned in Section 3.2.

In Figure 7, our proposed approach outperforms all other
alternatives. It is expected that without data augmentation
(i.e., No-Aug), the reconstructed error is the worst among
all methods. The difference between 3DMM-C and our
method demonstrates that DR based augmentation scheme
better interpolates facial shape space comparing with the
traditional 3DMM representation. The results between
Unity and our method shows that rendering quality plays
an important role in bridging the gap between real and syn-
thetic images. The proposed non-rigid deformation method
(Ours+ND) not only plays a critical role in texture transfer,
but also helps to improve local shape similarity.
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Figure 5: The quantitative results of our method compare to E3D [36], 3DMM-CNN [35], PRnet [9], RingNet [26] and
GanFit [12]. (a) The overall performance of each method. (b) The qualitative comparison of cropped meshes with ground
truth in d = [80, 95, 110]. (c) The evaluation results on different ethnicity.

Figure 6: The heatmap visualization of reconstructed mod-
els in d = 110. Vertices colored red fall above the 5mm er-
ror tolerance, while blue vertices are those which lie within
the tolerance.

4.4.1 Qualitative Comparison

Figure 8 shows our shape estimation method on frontal face
images side-by-side with the state-of-the-arts in MoFA test
database. We picked the same images shown in GanFit
[12]. Our method creates accurate face geometry, while
also capturing discriminate features which allow the iden-
tity of each face to be easily distinguishable from the others.
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Figure 7: The quantitative results of No-Aug, 3DMM-C,
Unity, our method and our method with non-rigid deforma-
tion. The proposed method achieve the best performance at
all time.

Meanwhile, as shown in Table 2, our result maintains a low
geometric complexity. This allows our avatars to be pro-
duction ready even in demanding cases such as on mobile
platforms. In Figure 9, we choose a few celebrity to verify
the geometry accuracy of our method comparing to others.
In Figure 10, we present the results of several celebrities
and compare our method not only for geometry but also in
appearance. Note that by projecting the selfie to a high-
resolution UV texture, our reconstructed models has photo-



Figure 8: The qualitative comparison of our method with
PRNet [9], MoFA [32], RingNet [26], GanFit [12] and E3D
[36]. Our method accurately reconstructs the geometry,
while maintaining a much lower vertices count, which is
more suitable for production.

Figure 9: The showcase of our reconstruction results of sev-
eral celebrities comparing to RingNet [26], PRNet [9] and
E3D [36].

realistic appearance while 3DMM-CNN [35] and PRNet [9]
used vertex color results in limited texture reapplication. In
Figure 11, we demonstrate our final results with blended
diffuse maps in Section 3.4.2.

4.5. Discussion of Data Distribution

The qualitative and quantitative comparison concludes
that the geometry of human faces are gender- and race-
dependent, thus representing human faces with a single
3DMM model is problematic. Furthermore, in our ablation
study further shows that Gaussian distribution assumption
might not be ideal for each category. In contrast to other
method, our proposed framework has the ability to extend
to more races such as South Asian or Latino, or any cate-
gories (e.g., ages) that can better describe a group of people
with similar facial geometry.

Figure 10: Qualitative results of our method compare to
RingNet [26], PRnet [9], E3D [36], and 3DMM-CNN [35].

Figure 11: Our final results with blended diffuse maps.

5. Conclusions

In this paper, we propose a novel scheme of photo-
realistic facial synthesis, by using high quality rendering on
augmented shapes from a small collection of facial scans,
for training facial shape inference from a single image. We
further adopt an optimization based approach for capturing
higher local similarity and enabling texture transfer. Exten-
sive experimental evaluation against state-of-the-art meth-
ods demonstrates effectiveness of the propose method on
facial shape inference.
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