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Section 3.2. Photo-Realistic Rendering

Figure 1 demonstrates the 30 different manually created
lighting conditions that are used to render photo-realistic
facial images. Figure 2 shows final high-quality rendering
samples with V-ray as well as those with Unity, which is
used for ablation study in Figure 7 (main paper). Note that,
for both rendering methods, we randomized the head pose,
environment map, lighting condition, and the field of view
(FOV) to mimic the selfie in the real world.

Section 3.4. Refinement and Texture Transfer

Landmarks Localization To achieve higher landmark
localization accuracy, we have developed a coarse-to-fine
approach. First, we predict all facial landmarks from the
detected facial bounding box. Then, given the initial land-
marks, we crop the eye, nose, and mouth areas for the sec-
ond stage fine-scale landmark localization. Figure 3 shows
our landmark mark-up as well as the bounding boxes used
for the fine scale landmark localization stage. We have used
a regression forest based approach [6] as the base landmark
predictor and we train 4 landmark predictors in total, (i.e.,
for overall face, eye, nose and mouth.)

Non-rigid Deformation We propose to utilize facial
landmarks detected in a coarse-to-fine fashion and formu-
late non-rigid deformation as an optimization problem that
jointly optimizes over camera intrinsic, camera extrinsic, fa-
cial expression and a per-vertex displacement field.

Problem Formulation To handle facial expressions, we
transfer the expression blendshape model in FaceWare-
house [2] to the same head topology with artist’s assis-
tance as {B1,B2, ...,BM}. In addition, we introduce a
per-vertex correction field δP to cover out of space non-
rigid deformation. Finally, a 3D face is reconstructed as
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PF = P +
M∑
i=1

βiBi + δP. Camera extrinsic T trans-

forms the face from its canonical reference coordinate sys-
tem to the camera coordinate system. It has a 3-DoF vector
t for translation and a 3-DoF quaternion representation q
for rotation. Camera intrinsic K projects the 3D model to
the image plane. During the optimization, we have found
that using a scale factor fs to update the intrinsic matrix

by K =
( fsf 0 cx

0 fsf cy
0 0 1

)
leads to the best numerical stability.

Here [f, cx, cy] are all initialized from the size of the input
image as cx = imh

2 , cy = imw

2 , and f = max(imh, imw).
Putting things together, we can represent the overall param-
eterized vector by p = [β, δP, t,q, fs].

Landmark Term We employ a global-to-local method for
facial landmark localization. For global inference, we first
detect the standard 68 facial landmarks, and use this ini-
tial estimation to crop local areas including eyes, nose, and
mouth (i.e., a total of 4 cropped images). Then we perform
fine-scale local inference on the cropped images (Please see
the supplementary material for more details). The landmark
localization approach produces a set of facial landmarks L
where Li = [Lxi , L

y
i ]. We propose to minimize the distance

between the predicted landmarks on the 3D model and the
detected landmarks,

El =
100

Weye

K∑
i=1

‖K(T (SM(PF ,mi),T),K)−Li‖2, (1)

where SM(P,mi) samples a 3D vertex from P given a
production-ready and sparse triangulation M on barycen-
tric coordinates mi, K(·, ·) and T (·, ·) are perspective
projection and rigid transformation operators respectively,
Weye is the distance between two outermost eye landmarks
and 100

Weye
is used to normalize the eye distance to 100. We

pre-select m on M and follow the sliding scheme [1] to
update the barycentric coordinates of the 17 facial contour
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Figure 1: Different lighting conditions for photo-realistic rendering augmentation

(a) V-ray rendering samples

(b) Unity rendering samples

Figure 2: The synthetic facial images from (a) Maya V-ray and (b) Unity

landmarks at each iteration.

Corrective Field Regularization: To enforce a smooth
and small per-vertex corrective field, we combine the fol-
lowing two losses,

Ec = ‖L(PF ,M)−L(P+

M∑
i=1

βt−1i Bi,M)‖2+λδ‖δP‖2.

(2)
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(a) Input Image (b) Landmark Detection of each
parts

Figure 3: Our landmark mark-up consists of 104 points,
(i.e., face contour (1-17), eye brows (18-27), left eye (28-
47), right eye (48-67), nose (68-84) and mouth (85-104)).
(a) Coarse detection of all landmarks and corresponding
bounding boxes for fine scale detection. (b) Separate fine-
scale detection result of local areas.

The first loss is used to regularize a smooth deformation
by maintaining the Laplacian operator L on the deformed
mesh (please refer to [9] for more details). βt−i indicates
the estimated facial expression blendshape weights from the
last iteration and is a fixed value. The second loss is used
to enforce a small corrective field and λδ is used to balance
the two terms.

Other Regularization Terms: We further regularize on fa-
cial expression, focal length scale factor, and rotation com-
ponent of camera extrinsic as follows,

Er =

M∑
i=1

β2
i

σ2
i

+ λf log
2(f) + λq‖q‖2, (3)

where σ is the vector of eigenvalues of the facial expression
covariance matrix obtained via PCA. λf and λq are regular-
ization parameters.

Summary: Our total loss function is given by

E = El + ωcEc + ωrEr, (4)

where ωc and ωr are used to balance relative importance
of the three terms. E is optimized by Gauss-Newton ap-
proach over parameters pt for a total of N iterations. For
the initial parameter vector p0, β0 and δP0 are initialized
as all-0 vectors, t0 and q0 are estimated from the EPnP ap-
proach [7], and f0s is initialized to be 1.

Implementation Details We use a total of N = 5 itera-
tions. When minimizing Equation (4), we use ωc = 25 and
ωr = 10. In Equation (2), we set λδ = 4, and in Equation
(3) we set λf = 5 and λq = 5.

Section 4.4. More Qualitative Results
In this section, we provide more comparison results that

cannot be included in the paper due to page limits. For Gan-

Fit [4], we have requested them to run the reconstructed
results of our test data. Thus, we are only able to show
the qualitative comparison with GanFit in our test database.
For those images/selfies in the other database, we have com-
pared our results with those papers whose codes are avail-
able online including RingNet [8], PRNet [3], Extreme3D
[12] and 3DMM-CNN [11].

More Qualitative Results of Our Data In Figure 5, we
provided the qualitative results of each categories. The first
and second columns are the input image and the ground
truth. Instead of showing the cropped mesh, we decided
to show the whole models for each method in Figure 5. It is
worth noting that our reconstructed full head model is ready
to be deployed for different applications.

Qualitative ESRC and JUN-Validate Due to the paper
limitation, we are not able to show the qualitative result of
ESRC and JUN-validate Dataset. Thus, we provide the vi-
sual comparison in Figure 6. The similar results confirmed
that proposed method can correctly replicate the 3D models
from single selfies with much lower polygon, as we claimed
in the paper.

More Qualitative Results of MoFA In Figure 7, we
have requested the results from MoFA [10] for side-by-side
comparisons. Although the quality of reconstructed models
are not as good as the results from other database due to the
image resolution, large head pose variation, occlusion such
as hair and glasses, our model is still considerably better
than other methods.

More Celebrity-In-the-Wild Results In Figure 8 - 9,
we present the results of several celebrities and compare our
method not only for geometry but also in appearance. Note
that by projecting the selfie to a high-resolution UV tex-
ture, our reconstructed models has photo-realistic appear-
ance while 3DMM-CNN [11] and PRNet [3] used vertex
color results in limited texture reapplication.

Figure 4: Audio driven lip syncing on our production ready
head model
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Figure 5: Qualitative results on our test dataset. From left to right, input image, ground truth, our method, GanFit [4],
RingNet [8], E3D [12], 3DMM-CNN [11], and PRnet [3].

Application - Audio-driven Avatar Animation

Our automatically generated head model is ready for dif-
ferent applications. Here we demonstrate a case of auto-
matic lip syncing driven by a raw waveform audio input as
shown in Figure 4. For data collection and deep neural net-
work structure, we adopt a similar pipeline as that of [5]
to drive the reconstructed model. All the animation blend-

shapes are transferred to our generic topology. Please refer
to our video for more details.
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(a) ESRC Male

(b) ESRC Female

(c) JUN-Validation Database

Figure 6: Qualitative results on the ESRC and JUN-Validation datasets. From left to right, input image, ground truth, our
method, 3DMM-CNN[11], E3D [12], PRnet [3], RingNet [8].
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(a) MoFA Male

(b) MoFa Female

Figure 7: Qualitative results of MoFa dataset. From left to right, input image, our method, RingNet [8], PRnet [3], 3DMM-
CNN[11], and MoFA [10].
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Figure 8: Qualitative results of our method compare to RingNet [8], PRnet [3], E3D [12], and 3DMM-CNN [11].
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Figure 9: Qualitative results of our method compare to RingNet [8], PRnet [3], E3D [12], and 3DMM-CNN [11].
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